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Introduction

The theoretical results and Monte-Carlo studies in the area of robustness
have in the main focused on symmetric distributions (Andrews, et al (1972)) or
procedures which are not scale invariance (which effectively eliminates most
problems due to asymmetry when the number of dimensions in the problem is
fixed). Recently, Huber (1973) and Bickel (1978) have examined situations in
which the asymmetry of errors can lead to quite complicated results. In this
paper we study the effects of asymmetric errors in regression.

A major difficulty with considering asymmetric errors has been that loca-
tion (intercept) is not uniquely defined. However, asymmetric data do occur
and there are situations where data transformation to achieve symmetry either
make no sense or are not possible. In regression, it might be conjectured
that asymmetry has different effects on intercept and slope (see Section 3);
if so, there will be situations where one might invest much effort in data
transformations, when the parameters of interest are not influenced by the
asymmetry.

Carroll (1978¢) considered asymmetric errors in regression and illustrated
his results by means of a Monte-Carlo study, using simple linear regression
with a uniform design. These results indicate that asymmetry effects robust
M-estimates of regression only through the intercept term, which may be biased
and have a variance that cannot be consistently estimated by the usual variance
estimates. The purpose of this report is to expand Carroll's (1978¢c) Monte-
Carlo study to a wide variety of designs. The results are almost staggering
in their consistency (and confirm the results of Carroll (1978c)), especially
in view of the fact that the designs we consider range from balanced to

unbalanced with a large amount of multicollinearity.
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In Section 2, we review the theory of M-estimates as it applies to situ-
ations where the errors are possibly asymmetric. In Section 3, we report the

Monte-Carlo results, while in Section 4 we present our conclusions.

M-estimates
In the one sample problem, we have a sample xl,xz,...,xn from a distribu-
tion function F. Our aim is to estimate the center of the distribution.

Huber (1964) defines the center § by

(2.1) [ ¥(x - 9)dF(x) = 0,

where y is a skew-symmetric (p(x) = -y (-x)) nondecreasing function. If

p(x) = x, g is the population mean. Huber (1964) then proposed to estimate ©

by solving
3 2
(2.2) [ v(x - g)dF (x) = n iglw(xi -0) =0,

with the solution denoted by Tn. If y(x) = x, we obtain the sample mean, which
is well-known to lack robustness against outliers. One possible choice of

to achieve this robustness is

Pp(x) = max(-K, min(x,K)),
where in our Monte-Carlo study we take k = 2. The estimate obtained by solving
equation (2.2) is not scale equivariant; to achieve this property, luber (1977)

proposes solving the system of equations
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n
(2.3) nt T owxg - T/s) =0
i=1
-3 B 2 2
(2.4) (n-1) iZ VI - T/s) = a = By yT(X)),
=1

where the last expectation is taken under the standard normal distribution. If

P

F is symmetric, it can be shown that if Tn + T(F), Sh E o(F), then

y L

nd (T - T(F)) > N(O, A(Y,F)),
where the asymptotic variance is (T(F) = 0, o(F) = 1)

2 " 2
AY,F) = [ 9 ()AF(x)/{ [ ' (x)dF(x)}° .

This suggests that the variance of Tn be estimated by

n n
(2.5) D, =s2 @17 £ v - T/ /! Lo - Tars

as is suggested by Gross (1976).
When F is asymmetric, these results are not true and in fact Carroll
(1978a) (extended to multivariate situations in Caroll (1978b)) shows the {9

following result.

Lemma 1. Suppose that for some constants T(F), o(F) we have that Tn g T(F),
ni(s, - o(F) = 0,(1) and BY((X, - TCF))/0(F) = 0. Taking T(F) = 0, o(F) = 1

(without loss of generality), for Y smooth,

-1

(2.6) (B ' (X))T =n

n
. o1
iglwxi) ¢ Qs DRX X)) + 0 (7).




This result says that Dn will not be a consistent estimate of the vari-
L}
ance of n’Tn if F is asymmetric, Carroll (1978c) shows by examples that there

exist situations for which

ED
n

—T( .65,
Var(n n)

and there are presumably distributions where this is worse. The question we
want to answer is how asymmetry will influence robust regression estimates.

The model we consider is (the use of 00 will become clear later)

(2.7 ¥ = 5150 * €0, 3 S TSR ) i

where the €, are i.i.d. random variables with Ew(cl) = 0 and 2= (i xil"’xip)'

We consider a version of Huber's Proposal 2 (Huber (1977), p. 37), which involves

solving the equations

n
-1 2
2 - - =
(‘--9) (n P) igl W (()’i ii‘gn)/sn) a-
While we will assume the ii are constants, the first two conditions of Lemma 2
(to follow) are reasonable and may be justified by quoting results of Maronna
and Yohai (1978). 1In a subset of their paper, they assume (y].gl). (¥3sX5)5een

is a sample from a distribution function P with EO’ 0, solving

0

BW((y - X B))/0y) = 0

B ((y - x B))/0p) = a.

—Sesemiag




Defining Ei = (yi - X Bo)/oo, they show essentially that if the ei are inde-

pendent of X5 and if §n’ Sh satisfy (3.2) and (3.3) (the latter with (n-p)
replaced by n), then n"(_s_n - §0) and nl’(sn - co) are asymptotically normally

distributed.

The proof of our result involves Taylor expansions along the lines of

Carroll (1978a, 1978b) and is omitted. Recall that our X, are non-stochastic.

Lemma 2. Suppose that

1
l S B) .
1 n*(8, - Bp) = 0, (1)
1
2 -
n (sn - 00) = Op(l)
n 1X'X » V(positive definite)

-1 .
nt o lox »(1,0,0,...,0) =W

i=1

Then, for ¢ sufficiently smooth,

(2‘10) (asv 5 (3184/82)E'E_) (§ﬂ = Eo)/oo
n
< n’? PRERACHE (a,/a,)0' (WP (e,) - a))
+ Op(n'l).
where
! a = E rlw’(rl) a; = EW'(EI)
a, = 2E ulw(tl)w'(tl) a, = 2E w(cl)w'(c‘) ‘ I

:
R T— o .
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In simple linear regression with

oo -
i 1

i

| E

f 1 i ' = Q '=A o)

E we obtain that if EO (Bint’ bslope) and én (Bint’ blepc)’ then

i

Corollary. Under the conditions of Lemma 3, for simple linear regression

(2.11) Bint = Bine?/%

n
= (a; - (a,a,/2,)"" 7! lg W(ep) - @/a) @ (e)-a)) + 0,

1

1 -1

; (2.12) (B )/oy = (a5 vj) " n

s

<1 :
slope ~ 6sloPe X1 w(ci) + Op(n Al 0

i=1

I Similar results hold for the general regression problem.

Lemma 2 says that, at least theoretically for large n when the dimension

of the problem remains fixed, the effect of asymmetry of errors on robust
estimators of regression occurs mainly in the intercept. If F is symmetric,
Lemma 2 says that since a, = 0,

1

Var(n"(Bn - B)/Oo)

2
v Ji Gt AR
(B ¢ (X))

and it has been suggested (Gross (1977)) that we estimate this variance by




S n 2
(2.13) D= — (n
1 1 2

i=1

1

ot

where r, = (yi - X dn)/sn. What is clear from Lemma 2 and the Corollary

are the following.

Theoretical Conclusions

(1) The effect of asymmetry of errors on robust regression estimates is
evidenced only in the intercept, which will tend to be '"biased" and have a
variance which is larger than expected from the symmetric case.

(11) Dn will be a consistent estimate of the variance of the slopes, but
will be generally inconsistent for the variance of the intercept.
(111} Dn will be a consistent estimate of the covariance.
In the next section we illustrate the results with a large Monte-Carlo

study.

Monte-Carlo Experiment

Let Z be a standard normal random variable. The five distributions

presented here are as follows:

Negative Exponential, mean 1.2§ NE

.50 Exp(2) EXP(2)

P
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The second (.10Z%) is only slightly skewed and was chosen to be reasonably repre-
sentative of the class of distributions close to, but not exactly, symmetric. Such

[ data might arise for example from data transformations which only to achieve approx-

imate symmetry. If N is the number of Monte-Carlo experiments and Yl,...,YN the

realized value of an estimate, the Monte-Carlo variance is defined to be
1 oN A
(3.1) T o, -0a° .

All the models are of the form

where g8' = (So, Sl, ey Bp). Let El""’ﬁN denote the N realized values of

the robust estimate of B, with

Then, in all our tables, E(Bj) denotes the average value of the éij’ > J5 N

E B, = B. .
j 181.1

Z|

ez

i

The term V(Bj) is the standardized Monte-Carlo variance of the robust estimate

of Bj and is the ith diagonal element of the matrix




X'XW.

Under symmetry, V(Bj) % B wz(cl)/{E wl(el)}z, so that the usual estimate of

V(Bj) (Gross (1977)) is denoted by V(Bj) and is defined by

Srzl n 2
Vg = —
= 3 dtepy
i=1

Hence, the tables contain the following information (NITER = number of
iterations).
(1) E Bj = Average value of the robust estimate obtained in the study.
(ii) V(Bj) = The Monte-Carlo variance of the estimate of Bj.
To obtain the "true'" Monte-Carlo variance of Bj, merely multiply V(Bj) by the

jth diagonal element of (X'X) "IN,

1]

(iii) V(Bj) The usual estimate of V(Bj) obtained assuming symmetry.

(iv) Ratio

V(Bj]/V(Bj) = Ratio of estimated variance to true variance.
The following designs were considered in our Monte-Carlo experiment. In

all cases, the number of iterations is 1200.

Design #1. Here we have

Yijk =ut+a+ Yj + Eijk’ where
i=1,2
jlw 1,2.5
K= 1,2,5,8 (Hence n = 24)
o +a, = 0

—— T e e
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This is a balanced 2x3 design. In Table 1 we call Bo = U, Bl = ap,
82 ® Xy B3 =Y, The true values used are Bo = 2.50, 81 = -.50, 82 = -1.00,

0.00.

™
w
n

Design #2. Here we have simple linear regression

X, = BO + lei * €y, (i =1,...,20)

with BO = 1.00, B, = .50 and the values of the X, being -.95, -.90,...,.90,.95.

Design #3. This is the same as Design #2 except the x's are unbalanced and
given by

X
-0.349
-0.344
-0.333
-0.318
-0.297
-0.270
-0.239
-0.202
-0.160
-0.113
-0.060
-0.002

0.060
0.128
0.202
0.281
0.365
0.454
0.549
0.649
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Design #4. This is again simple linear regression, but with 40 design points

given by
X X
-.342 -.072
-.340 -.046
-.338 -.017
-.334 .012
-.329 .043
-.322 .075
-.315 .108
-.306 .143
-.295 .179
-.281 .216
-.271 .254
-.257 .294
-.242 .335
-.225 .378
-.207 .421
-.188 .466
-.167 .512
-.145 .560
-.122 .606
-.098 .658

Note the highly unbalanced nature of this design.
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This is a regression

Design LR

t

Y1 = 1.00 + .SOXil + .25Xi2 * &

where the )(.l are essentially translates of xfl. There are n=20 design points

2

arrayed in a uniform manner with X'X being a diagonal matrix.
X1 %2
-0.34435 -0.21371
-0.34205 -0.21370
-0.33745 -0.21366
-0.33056 -0.21351
-0.32136 -0.21317
-0.30987 -0.21250
-0.29608 -0.21135
-0.28000 -0.20953
-0.26161 -0.20682
-0.24093 -0.20296
-0.21795 -0.19766
-0.19266 -0.19062
-0.16509 -0.18147
-0.13521 -0.16985
-0.10304 -0.15534
-0.06856 -0.13750
-0.03179 -0.11584
0.00728 -0.08987
0.04865 -0.05904
0.09231 -0.02279
0.13827 0.01949
0.18654 0.06843
0.23710 0.12470
0.28995 0.18899
0.34511 0.26204
? 0.40257 0.34460
! 0.46232 0.43746
0.52437 0.54146
0.58872 0.65744
0.65537 0.78629
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Design #6. This is the same model as in Design #5 but with a highly unbalanced

design.

il ]
-0.96667 0.60148
-0.90000 0.47704
-0.83333 0.36148
-0.76667 0.25481
-0.70000 0.15704
-0.63333 0.06815
-0.56667 -0.01185
-0.50000 -0.08296
-0.43333 -0.14519
-0.36667 -0.19852
-0.30000 -0.24296
-0.23333 -0.27852
-0.16667 -0.30519
-0.10000 -0.32296
-0.03333 -0.33185

0.03333 -0.33185
0.10000 -0.32296
0.16667 -0.30519
0.23333 -0.27852
0.30000 -0.24296
0.36667 -0.19852
0.43333 -0.14519
0.50000 -0.08296
0.56667 -0.01185
0.63333 0.06815
0.70000 0.15704
0.76667 0.25481
0.83333 0.36148
0.90000 0.47704

0.96667 0.60148




Note that

x'"Y = [ .033 0 0
0 4.32 -4.48
0 -4.48  5.06
ok .
x'0°! in
corrlation form = 1 0 0
0 e
RO

Hence this design is highly unbzlanced with a great deal of multicollinearity

(i.e., xil and xiz are highly correlated).




Design #1

The true values are 80 = 2.50, 81 = -.50, 82 = -1.00, B3 = 0.00.

2
2.50
.99
.99
1.00

- .50
.98
.99

1.01

-1.00
.96
.99

1.03

.01
1.04
.99
.95

.102

2

2.49

-1

.98
.99
.01

.50
.99
.99
.00

.00
.97
.99
.02

.00
.03
.99
.96

.S0Z

2.44
1.46
1.17

.80

.01

.99

2.45
1.49

.85

1.27
.93

1.27
.96

1.30
1.27
.98

EXP(Z)

2.41
.71
.52
R

-~ .50
.51
De

1.01

-1.00
.50
.52

1.03

.00
.53
52
.97




T T

.49

The true values are 80 = 1.00, Bl = ,50.

.1022
.99

1.06
.99
.93

.49
1.01
.99
.98

Design #2

.502°2
9

1.49
1.11
o

.49
1.16
1.11

.96

NE
94
1.50
1.24
.83

.48
1.25
1.24

.99

EXP (2
.90

.70
.48
.69

.50
«52
.48
.93

16
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Design #3 |
The true values are Bo = 1.00, Bl = ,50.

2 2 1

z .10z .502 NE EXP(Z) ¥

E 8, 1.00 .99 .92 .94 .90 |

V(8,) 1.05 1.06 1.49 1.50 .70 I
\7(80) 1.00 .99 1.11 1.24 .48
Ratio .95 .94 .75 .83 .69
E B, .49 .49 .50 .48 .50
V(8,) 1.03 1.02 1.17 1.24 53
\7(31) 1.00 .99 1.11 1.24 .48

Ratio .97 .98 .95 1.00 92

e e T
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Design #4
The true values are Bo = 1.00, Bl = .50,
z .20z? .s0z? NE EXP(Z)
E Bo 1.00 91 .88
Y(BO) 1.02 1.46 .64
V(Bo) 1.00 1.05 .43
Ratio .98 72 .67
E Bl .50 .51 .51
Y(Bl) 1.00 1.06 .43
V(Bl) 1.00 1.06 .43
Ratio 1.00 1.00 1.00

T .




E B
Y(Bo)
\(80)
Ratio

y——

E B
Y(Bl)
V(Bl)
Ratio

E 8,
V(8,)
9(82)

Ratio

X'X = [30

2
.00
.99
.00
.02

.49
.02
.00
<99

.24
.00
.00
.00

0
0
2.65

Design #5
.lOZ2 .SOZ2
.98 .91
.01 1.47
.00 1.02
.99 .74
.49 .50
.02 1.14
.00 1.09
.98 .96
3. 27
.00 1.12
.00 1.09
.00 .97

1

The true values are 80 = 1.00, 81 = .50, B8, = .25.

NE EXP(2)
.92 .89
St .68
.19 .46
.79 .67
.50 .50
.24 .49
.19 .46
.95 .93
.27 .27
.16 .47
.19 .46
.02 .98
} xx)! .

19




Design #6
The true values are By = 1.00, 8, = .50, B, = .25.

g,
z 10z° 5022 NE EXP(2) !
3 E 8, 1.00 98 .91 .92 .89
V(8,) .99 1.01 1.47 1.51 .67 |
f‘ \7(30) 1.00 1.00 1.09 1.18 .46 4
i Ratio 1.02 .99 .74 .79 .68 %
1 E 8, .49 .49 .46 .48 .46 i
V() .98 .97 1.08 1.16 .45
\7(51) 1.00 1.00 1.09 1.18 .46 ;
Ratio 1.02 1.02 1.09 1.03 1.02
E 8, .24 .26 .31 .30 .30
V(8,) .97 .97 1.10 1.17 .46
] V(8. 1.00 1.00 1.09 1.18 .46
‘; Ratio 1.03 1.02 .99 1.01 1.00
1 ;
| §
§
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Conclusions

The Monte-Carlo results are surprisingly consistent. It appears that, in
robust regression, one can accurately estimate slopes and their variances, even
if the design is highly unbalanced with considerable multicollinearity; the
conclusion holds over a wide class of distributions varying from the normal to
a heavy tailed, very skewed distribution (EXP(Z)). However, estimating inter-
cept (and especially its variance) is complex if the distributions are heavily
skewed. As in Carroll (1978c), we recommend that if one has an unbalanced
design, a heavily skewed error distribution, and wishes to estimate terms
involving the intercept, variance could be assessed by using the weighted

jackknife of Hinkley (1977).
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